Answer for HW_10

1 正则变换

本题其实可以看作第二类正则变换,母函数是

F2(qα,pα,t)=αqαpαf(qα,t)

采用爱因斯坦求和约定:

(1)pα=Lqα˙=Lqα˙+f˙qα˙=pα+fqα H(pα,qα)=pαqα˙L=H+fqαqα˙dfdt(2)=H(pα,qα)ft=H(pα+fqα,qα)

证明 q˙α=Hpαq˙α=Hpα

q˙α=q˙α=Hpα|q=Hpβpβpα|q=Hpβδαβ=Hpα(2)=Hpαpαf(qα,t)t(3)=Hpα

证明 p˙α=Hqαp˙α=Hqα

注意到

(4)pα=pα+fqαpβqα=2fqαqβ(5)H(p,q)qα|p=H(p,q)qα|p+H(p,q)pβpβqα|p

于是

p˙α=p˙αddtfqα=Hqα|p(5)=Hqα|pHpβpβqα|p(2)=HqαqαftHpβpβqα(3)(4)=Hqα(qαft+q˙β2fqαqβ)=ddtfqα

于是

(5)Hqα=p˙α

成立,反之同理。

2 球面摆

(1)

拉氏量

L(θ,ϕ;θ˙,ϕ˙)=TV=12ml2(θ˙2+sin2θϕ˙2)+mglcosθ

得到广义动量

pθ=Lθ˙=ml2θ˙,pϕ=Lϕ˙=ml2sin2θϕ˙

勒让德变换得到

(6)H(θ,ϕ;pθ,pϕ)=θpθ+ϕpϕL=12m(pθ2l2+pϕ2l2sin2θ)mglcosθ

(2)

(7)p˙ϕ=Hϕ=0sin2θϕ˙=const(8)p˙θ=Hθ=pϕ2cosθml2sin3θ+mglsinθθ¨ϕ˙2cosθsinθglsinθ=0

(3)

自由度为 s=2 ,对于可积系统,运动积分有 s[1],即 H ( 不显含 t) 和 pθ

参见:

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, chapter 10, §49 :

In order to integrate a system of 2n ordinary differential equations, we must know 2n first integrals. It turns out that if we are given a canonical system of differential equations, it is often sufficient to know only n first integrals-each of them allows us to reduce the order of the system not just by one, but by two.

Two functions F 1 and F 2 on a symplectic manifold are in involution if their Poisson bracket is equal to zero. Liouville proved that if, in a system with n degrees of freedom (i.e., with a 2n-dimensional phase space), n independent first integrals in involution are known, then the system is integrable by quadratures.